Chlorine Atom



  • Each chlorine atom consists of 17 protons (positively charged sub-atomic particles) in the atom's nucleus (central region), balanced by seventeen electrons (negatively charged sub-atomic particles) distributed around the nucleus.
  • Neutron Number and Mass Number of Chlorine. Mass numbers of typical isotopes of Chlorine are 35; 37. The total number of neutrons in the nucleus of an atom is called the neutron number of the atom and is given the symbol N.Neutron number plus atomic number equals atomic mass number: N+Z=A.The difference between the neutron number and the atomic number is known as the neutron excess: D = N.
  • The mass of a single chlorine atom =35g/6.023×10^23 = 5.81×10–23g The mass of a single hydrogen atom= the mass of a carbon-12 isotope of 1/12 = 1.66×10^-24g Therefore,the average mass of a single chlorine atom= 5.81×10^-23g/1.66×10^-24g= 35.5 304 views.
  • Chlorine has two stable isotopes chlorine-35 and chlorine-37with Chlorine-35 accounting for roughly 3 out of every 4 naturally occurring chlorine atoms. Chlorine-36 is also known naturally and is a radioactive isotope with a half life of about 30,000 years.
  1. Chlorine Atomic Radius

The bond length in ClCl is: 189.1pm. There are several other ways ways to define radius for atoms and ions. Follow the appropriate hyperlinks for literature references and definitions of each type of radius. All values of radii are given in picometres (pm).

Chlorine is a greenish yellow gas at room temperature and atmospheric pressure. It is two and a half times heavier than air. It becomes a liquid at −34 °C (−29 °F). It has a choking smell, and inhalation causes suffocation, constriction of the chest, tightness in the throat, and—after severe exposure—edema (filling with fluid) of the lungs. As little as one part per thousand in air causes death within a few minutes, but less than one part per million may be tolerated. Chlorine was the first gas used in chemical warfare in World War I. The gas is easily liquefied by cooling or by pressures of a few atmospheres at ordinary temperature.

Chlorine has a high electronegativity and a high electron affinity, the latter being even slightly higher than that of fluorine. The affinity of chlorine for hydrogen is so great that the reaction proceeds with explosive violence in light, as in the following equation (where hν is light):

In the presence of charcoal, the combination of chlorine and hydrogen takes place rapidly (but without explosion) in the dark. A jet of hydrogen will burn in chlorine with a silvery flame. Its high affinity for hydrogen allows chlorine to react with many compounds containing hydrogen. Chlorine reacts with hydrocarbons, for example, substituting chlorine atoms for the hydrogen atoms successively. If the hydrocarbon is unsaturated, however, chlorine atoms readily add to the double or triple bond.

Chlorine

Chlorine molecules are composed of two atoms (Cl2). Chlorine combines with almost all the elements, except for the lighter noble gases, to give chlorides; those of most metals are ionic crystals, whereas those of the semimetals and nonmetals are predominantly molecular.

The products of reaction with chlorine usually are chlorides with high oxidation numbers, such as iron trichloride (FeCl3), tin tetrachloride (SnCl4), or antimony pentachloride (SbCl5), but it should be noted that the chloride of highest oxidation number of a particular element is frequently in a lower oxidation state than the fluoride with the highest oxidation number. Thus, vanadium forms a pentafluoride, whereas the pentachloride is unknown, and sulfur gives a hexafluoride but no hexachloride. With sulfur, even the tetrachloride is unstable.

Aside from the −1 oxidation states of some chlorides, chlorine exhibits +1, +3, +5, and +7 oxidation states, respectively, in the following ions: hypochlorite (ClO), chlorite (ClO2), chlorate (ClO3), and perchlorate (ClO4). Five oxides—chlorine monoxide (Cl2O), chlorine dioxide (ClO2), chlorine perchlorate (Cl2O4), dichlorine hexoxide (Cl2O6), and dichlorine heptoxide (Cl2O7)—all highly reactive and unstable, have been indirectly synthesized. Chlorine can undergo addition or substitution reactions with organic compounds.

Chlorine displaces the heavier, less electronegative halogens, bromine and iodine, from compounds. The displacement of bromides, for example, occurs according to the following equation:

Furthermore, it converts several oxides into chlorides. An example is the conversion of iron trioxide to the corresponding chloride:

Chlorine is moderately soluble in water, yielding chlorine water, and from this solution a solid hydrate of ideal composition, Cl2∙7.66H2O, is obtained. This hydrate is characterized by a structure that is more open than that of ice; the unit cell contains 46 molecules of water and 6 cavities suitable for the chlorine molecules. When the hydrate stands, disproportionation takes place; that is, one chlorine atom in the molecule is oxidized, and the other is reduced. At the same time, the solution becomes acidic, as shown in the following equation:

in which the oxidation numbers are written above the atomic symbols. Chlorine water loses its efficiency as an oxidizing agent on standing, because hypochlorous acid gradually decomposes. The reaction of chlorine with alkaline solutions yields salts of oxyacids.

Chlorine Atomic Radius

The first ionization energy of chlorine is high. Although ions in positive oxidation states are not very stable, high oxidation numbers are stabilized by coordination, mainly with oxygen and fluorine. In such compounds bonding is predominantly covalent, and chlorine is capable of exhibiting the oxidation numbers +1, +3, +4, +5, +6, and +7.